New Trends in Brain Tumor Research

Kyle M. Walsh, PhD (University of California, San Francisco)
Monica Venere, PhD (Cleveland Clinic)
ABTA Research Grants

• The ABTA distributes research funding through four primary programs:
 – Basic Research Fellowship Program
 – Discovery Grant Program
 – Medical Student Summer Fellowship Program
 – Collaborative Research Partnerships
ABTA’s Basic Research Fellowship

• Two-year, $100,000 grant
• Supports early-career scientists entering the field of brain tumor research
• Four grants in the 2013-2015 cycle
 – James Purzner, MD - Stanford University
 – Xuanhua Xie, PhD - UT Southwestern
 – Stefanie Robel, PhD - The University of Alabama at Birmingham
 – Forrest Kievit, PhD - University of Washington
Basic Research Fellowship Highlight

- **Trainee**: Forrest Kievit
- **Mentor**: Richard Ellenbogen
- **Project**: “Pediatric Brain Tumor Gene Therapy for Overcoming Radiation Resistance Using Nanotheranostic SPIONs”
- **Motivation**: Radiotherapy is integral in the treatment of pediatric ependymoma and medulloblastoma, but can cause radiation-induced developmental disorders
- **Goal**: Increase the sensitivity of brain tumors to radiotherapy while sparing adjacent healthy brain
- **Approach**: Use a nanoparticle siRNA delivery vehicle to inhibit DNA repair in tumor cells and to sensitize tumors to radiotherapy
Basic Research Fellowship Highlight

• Trainee: Forrest Kievit
• Mentor: Richard Ellenbogen
• Reported results:
 – Successful development of a nanoparticle-based siRNA delivery vehicle for knocking down expression of a critical DNA-repair enzyme (Ape1)
 – Ape1 expression was reduced by >75% in medulloblastoma and ependymoma cells
 – Reduction in Ape1 activity correlated with increased sensitivity to radiotherapy and decreased tumor cell survival
 – “Nanoparticle-mediated silencing of DNA repair sensitizes pediatric brain tumor cells to \(\gamma \)-irradiation”
ABTA’s Discovery Grants Program

• One-year, $50,000 grant
• Supports high-risk/high-impact projects with the potential to change current diagnostic or treatment paradigms
• Eight grants in the 2014-2015 cycle
 – Three focused on immunotherapy/immune stimulation
 – Four focused on novel therapeutic agents, including novel combination therapy
 – One focused on tumor metabolism and improved tumor grading
Discovery Grants Program Highlight

- **Awardee**: Courtney Crane
- **Project**: “Improving Natural Killer cell anti-glioma immunity using chimeric cytokine receptors”
- **Motivation**: Glioma cells evade immune surveillance by down-regulating natural killer (NK) cells. Upregulation of NK cells is expected to have a therapeutic benefit.
- **Goal**: Develop a novel immune therapy for GBM patients by harnessing NK cells
- **Approach**: Use a chimeric cytokine receptor to target NK cells to glioma cells in order to activate NK-based glioma immunosurveillance
Discovery Grants Program Highlight

• **Awardee**: Courtney Crane

NK cells are degranulated in response to NKG2D ligand-bearing infiltrating myeloid cells. Lactate dehydrogenase induces NKG2D ligands on myeloid cells and disrupts NK-cell immunosurveillance. Lactate dehydrogenase and NKG2D ligands decrease following a decrease in tumor mass. "Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients"
How researchers share their outcomes

• Publications in scientific journals
 • Now most are available online
 • Many now use open-access options

• Talks and seminars
 • Departmental, institutional, or at conferences

• Conference posters
 • Best way to share and see a large amount of work in a short period of time
 • All ABTA-funded “Basic Research Fellowship” and “Discovery Grant” awardees will present posters this afternoon
What is a scientific poster?

• A poster that allows researchers to communicate our findings in a concise and informative manner with our peers, typically at conferences or in research buildings

• Ideally a poster should generate interest to engage scientific discussion
Additional purposes of a scientific poster

• To educate others about research findings
 • Represents an illustration of their work

• To get feedback and unique perspectives from peers
 • This can be helpful especially prior to submitting a manuscript for publication

• To network or develop collaborations with other researchers
 • Who may or may not be in the same field
Making a scientific poster
Introduction

An abstract or overview of the research problem. Should be a brief summary that provides rationale for the project and most importantly - entice the viewer to keep reading.
Title
(should attract viewers and clarify the subject matter)

Introduction
An abstract or overview of the research problem. Should be a brief summary that provides rationale for the project and most importantly - entice the viewer to keep reading.

Hypothesis
A prediction or proposed explanation for a phenomenon that can be tested by experimentation or observations

Background Data or Key Concepts

![Diagram](image)
Title
(should attract viewers and clarify the subject matter)

Introduction
An abstract or overview of the research problem. Should be a brief summary that provides rationale for the project and most importantly - entice the viewer to keep reading.

Hypothesis
A prediction or proposed explanation for a phenomenon that can be tested by experimentation or observations.

Experimental Methods
One of the most important parts of the poster! This should clearly describe the approach for the research.

Step 1
Step 2
Step 3

Background Data or Key Concepts

![Tumour cells are heterogeneous, but most cells can proliferate extensively and form new tumours.](image1.png)

![Tumour cells are heterogeneous and only the cancer stem cell subset (CSC; yellow) has the ability to proliferate extensively and form new tumours](image2.png)
Title
(should attract viewers and clarify the subject matter)

Introduction
An abstract or overview of the research problem. Should be a brief summary that provides rationale for the project and most importantly - entice the viewer to keep reading.

Hypothesis
A prediction or proposed explanation for a phenomenon that can be tested by experimentation or observations.

Experimental Methods
One of the most important parts of the poster! This should clearly describe the approach for the research.

Results
Analysis and key findings. Can include charts, graphs, images. Will be the bulk of the poster, sometimes with sub-titles to describe each finding.

Background Data or Key Concepts
Figure 1. Gene “A” is expressed more in GBM than the normal brain

Figure 2. Gene “A” is expressed in regions of high cell division

Figure 3. Gene “A” controls tumor growth by regulating how cells proliferate
Result of increased Gene A

Figure 4. Blocking the effects of Gene “A” causes tumors to shrink

0 2 4 6 8 10 12
GBM1 GBM2 GBM3 GBM4

Proliferation
Migration
Invasion
Death
Title
(should attract viewers and clarify the subject matter)

Introduction
An abstract or overview of the research problem. Should be a brief summary that provides rationale for the project and most importantly - entice the viewer to keep reading.

Hypothesis
A prediction or proposed explanation for a phenomenon that can be tested by experimentation or observations

Experimental Methods
One of the most important parts of the poster! This should clearly describe the approach for the research.

Results
Analysis and key findings. Can include charts, graphs, images. Will be the bulk of the poster, sometimes with sub-titles to describe each finding.

Conclusions
Summary of the findings. Should list the key take home points of the project.
Title
(should attract viewers and clarify the subject matter)

Introduction
An abstract or overview of the research problem. Should be a brief summary that provides rationale for the project and most importantly - entice the viewer to keep reading.

Hypothesis
A prediction or proposed explanation for a phenomenon that can be tested by experimentation or observations.

Experimental Methods
One of the most important parts of the poster! This should clearly describe the approach for the research.

Step 1

Step 2

Step 3

Results
Analysis and key findings. Can include charts, graphs, images. Will be the bulk of the poster, sometimes with sub-titles to describe each finding.

Figure 1. Gene “A” is expressed more in GBM than the normal brain.

Figure 2. Gene “A” is expressed in regions of high cell division.

Figure 3. Gene “A” controls tumor growth by regulating how cells proliferate.

Figure 4. Blocking the effects of Gene “A” causes tumors to shrink.

Conclusions
Summary of the findings. Should list the key take home points of the project.

Implications and Future Directions
How can these findings help others (patients, practitioners, educators, policy makers). How can the results direct future studies? Were there any limitations?
Title
(should attract viewers and clarify the subject matter)

Introduction
An abstract or overview of the research problem. Should be a brief summary that provides rationale for the project and most importantly - entice the viewer to keep reading.

Hypothesis
A prediction or proposed explanation for a phenomenon that can be tested by experimentation or observations.

Experimental Methods
One of the most important parts of the poster! This should clearly describe the approach for the research.

Step 1 Step 2 Step 3

Results
Analysis and key findings. Can include charts, graphs, images. Will be the bulk of the poster, sometimes with sub-titles to describe each finding.

Figure 1. Gene “A” is expressed more in GBM than the normal brain

Figure 2. Gene “A” is expressed in regions of high cell division

Figure 3. Gene “A” controls tumor growth by regulating how cells proliferate

Figure 4. Blocking the effects of Gene “A” causes tumors to shrink

Conclusions
Summary of the findings. Should list the key take home points of the project.

Implications and Future Directions
How can these findings help others (patients, practitioners, educators, policy makers). How can the results direct future studies? Were there any limitations?

References
Other papers that you cited in this poster or that were helpful in supporting your research.
Title
(should attract viewers and clarify the subject matter)

Introduction
An abstract or overview of the research problem. Should be a brief summary that provides rationale for the project and most importantly - entice the viewer to keep reading.

Hypothesis
A prediction or proposed explanation for a phenomenon that can be tested by experimentation or observations

Experimental Methods
One of the most important parts of the poster! This should clearly describe the approach for the research.

Results
Analysis and key findings. Can include charts, graphs, images. Will be the bulk of the poster, sometimes with sub-titles to describe each finding.

Figure 1. Gene “A” is expressed more in GBM than the normal brain

Figure 2. Gene “A” is expressed in regions of high cell division

Figure 3. Gene “A” controls tumor growth by regulating how cells proliferate

Figure 4. Blocking the effects of Gene “A” causes tumors to shrink

Conclusions
Summary of the findings. Should list the key take home points of the project.

Implications and Future Directions
How can these findings help others (patients, practitioners, educators, policy makers). How can the results direct future studies? Were there any limitations?

References
Other papers that you cited in this poster or that were helpful in supporting your research

Acknowledgements
Individuals who assisted with the project (lab members) and funding sources (ABTA)
Presenting posters at conferences
Advantages of presenting posters

• Allows for one-on-one communication directly with the author

• Provides a good survey of what is hot in the field

• Can see a lot of posters in a limited amount of time

• Posters provide the highlights of a body of work
Potential disadvantages of posters

• Can be hit-or-miss in terms of the number of interactions

• A pain to travel with (although now posters are being presented digitally or on fabrics)

• Can be expensive and time-consuming to make

• Possibility of someone running with your idea before you can publish

• Not all posters lead to publications
How to point out a good one...

Four keys to success

<table>
<thead>
<tr>
<th>Clear pictures and graphs – attention to details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not too much text – nobody likes to be bombarded</td>
</tr>
<tr>
<td>Easy flow – simple to read without too many explanations</td>
</tr>
<tr>
<td>An energetic presenter – a little enthusiasm can go a long way in connecting with your audience</td>
</tr>
</tbody>
</table>
Tips for viewing a poster

• Ask as many or as few questions as you want

• Don’t feel pressure to be interested in every poster

• Presenters should be able to tell you their story in a concise manner
What to take home when you visit or present a poster

A novel finding that complements my research or field of study
What to take home when you visit or present a poster

A new technique or technology
What to take home when you visit or present a poster

A collaboration or networking opportunity
Don’t be shy!

- All of the ABTA researchers are eager to share their research with you as well as hear your stories and questions!
THANK YOU

Any Questions?